Evaluate the Integral \(\int_{1}^{x} \frac{dt}{\sqrt{t^{3}-1}} \)

How to evalute
\begin{equation}
\int\limits_{1}^{x} \frac{dt}{\sqrt{t^{3}-1}}
\end{equation}
was a question posed at Mathematics Stack Exchange. Here is my solution

The integral is of the form of the polynomial under the radical having 1 real and 2 complex roots and the lower limit of integration equal to the real root. So we have
\begin{equation}
\int\limits_{a}^{x} \left( (t-a)[(t-r)^{2} + s^{2}] \right)^{-1/2}\, dt
= \frac{1}{\sqrt{m}} \mathrm{cn}^{-1}\left(\frac{m-(t-a)}{m+(t-a)},k \right)
\end{equation}
where
\begin{equation}
m^{2} = (r – a)^{2} + s^{2} \quad \mathrm{and} \quad k^{2} = \frac{1}{2} – \frac{a-r}{2m}
\end{equation}
\(\mathrm{cn}^{-1}z\) is the inverse of one of the Jacobi elliptic functions and \(k\) is the modulus.

To factor the polynomial inside of the radical, we note that the roots are the cube roots of 1, thus
\begin{align}
t^{3}-1 &= (t-t_{1})(t-t_{2})(t-t_{3}) \\
&= (t-1) \left(\Big[t+\frac{1}{2}\Big]-i\frac{\sqrt{3}}{2} \right) \left(\Big[t+\frac{1}{2}\Big]+i\frac{\sqrt{3}}{2} \right) \\
&= (t-1) \left(\Big[t+\frac{1}{2}\Big]^{2} + \frac{3}{4}\right)
\end{align}

We now have
\begin{equation}
a = 1 \quad r = -\frac{1}{2} \quad s = \frac{\sqrt{3}}{2} \quad m^{2} = 3 \quad k^{2} = \frac{1}{2} – \frac{3}{4\sqrt{3}}
\end{equation}
and thus
\begin{equation}
\int\limits_{1}^{x} \frac{dt}{\sqrt{t^{3}-1}}
= 3^{-1/4} \mathrm{cn}^{-1}\left(\frac{\sqrt{3} + 1 – x}{\sqrt{3} – 1 + x},\sqrt{\frac{1}{2} – \frac{3}{4\sqrt{3}}} \right)
\end{equation}

Leave a Reply

Your email address will not be published. Required fields are marked *