Evaluate \(\int \frac{x^{2-2/n}}{(3-x)^{1/n}} dx \)

How to evaluate
\begin{equation}
\int \frac{x^{2-2/n}}{(3-x)^{1/n}} dx
\end{equation}
was a question posed at Mathematics Stack Exchange. Here is my solution.

Let \(x=3z\)

\begin{align}
\int \frac{x^{2-2/n}}{(3-x)^{1/n}} dx &= 3^{-1/n} \int \frac{x^{2-2/n}}{(1-x/3)^{1/n}} dx \\
&= 3^{3-3/n} \int z^{2-2/n} (1-z)^{-1/n} dz \\
&= 3^{3-3/n} \mathrm{B}_{z} \left( 3-\frac{2}{n}, 1-\frac{1}{n} \right) \\
&= 3^{3-3/n} \frac{n}{3n-2} \, z^{3-2/n} \, {}_{2}\mathrm{F}_{1}\left(3-\frac{2}{n},\frac{1}{n};4-\frac{2}{n};z \right) \\
&= \frac{1}{3^{1/n}} \frac{n}{3n-2} \, x^{3-2/n} \, {}_{2}\mathrm{F}_{1}\left(3-\frac{2}{n},\frac{1}{n};4-\frac{2}{n};\frac{x}{3} \right)
\end{align}

Note:

\begin{align}
\mathrm{B}_{z}(p,q) &= \int_{0}^{z} t^{p-1} (1-t)^{q-1} \mathrm{d}t \\
&= \frac{z^{p}}{p} \,{}_{2}\mathrm{F}_{1}(p,1-q;p+1;z)
\end{align}
The incomplete beta function and hypergeometric function.

Leave a Reply

Your email address will not be published. Required fields are marked *