Evaluate \(\int_{0}^{\infty} \frac{x^{3}}{\mathrm{e}^{x}-1} dx\)

How to evaluate
\begin{equation}
\int\limits_{0}^{\infty} \frac{x^{3}}{\mathrm{e}^{x}-1} dx
\end{equation}
was a question posed at Mathematics Stack Exchange. Here is my solution to a more general problem.

We consider the more general integral
\begin{align}
\int\limits_{0}^{\infty} \frac{x^{n}}{\mathrm{e}^{ax}-1} dx
&= \int\limits_{0}^{\infty} \frac{\mathrm{e}^{-ax} x^{n}}{1-\mathrm{e}^{-ax}} dx \\
&= \int\limits_{0}^{\infty} \mathrm{e}^{-ax} x^{n} \sum\limits_{k = 0}^{\infty} \mathrm{e}^{-kax} dx \\
&= \sum\limits_{k = 0}^{\infty} \int\limits_{0}^{\infty} x^{n} \mathrm{e}^{-(a+ak)x} dx
\end{align}

To evaluate the integral, let \((a+ak)x = z\)
\begin{equation}
\int\limits_{0}^{\infty} x^{n} \mathrm{e}^{-(a+ak)x} dx
= \frac{1}{a^{n+1}} \frac{1}{(1+k)^{n+1}} \int\limits_{0}^{\infty} z^{n} \mathrm{e}^{-z} dz
= \frac{1}{a^{n+1}} \frac{1}{(1+k)^{n+1}} \Gamma(n+1)
\end{equation}

Now we have
\begin{equation}
\int\limits_{0}^{\infty} \frac{x^{n}}{\mathrm{e}^{ax}-1} dx
= \frac{1}{a^{n+1}} \Gamma(n+1) \sum\limits_{k = 1}^{\infty} \frac{1}{k^{n+1}}
= \frac{1}{a^{n+1}} \Gamma(n+1) \zeta(n+1)
\end{equation}

The original problem is
\begin{equation}
\int\limits_{0}^{\infty} \frac{x^{3}}{\mathrm{e}^{x}-1} dx
= \Gamma(4) \zeta(4) = 6\frac{\pi^{4}}{90} = \frac{\pi^{4}}{15}
\end{equation}

Leave a Reply

Your email address will not be published. Required fields are marked *